检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学理学院,黑龙江哈尔滨150001 [2]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
出 处:《计算机仿真》2010年第10期179-182,186,共5页Computer Simulation
摘 要:为解决复杂非线性系统的辨识问题,提出了一种基于进化粒子群优化算法的非线性系统辨识方法。在标准粒子群优化算法的基础上引入一种进化策略,增加粒子的多样性。在算法迭代寻优的过程中,通过对群体中的粒子进行选择、变异等进化操作,构造进化粒子群优化算法,提高算法的全局搜索能力。将非线性系统辨识问题转化为非线性连续域优化问题,利用进化粒子群优化算法进行并行、高效搜索,以获得该优化问题的解。通过对多输入单输出的Wiener-Hammerstein模型进行辨识,验证了该方法的正确性和可行性。Nonlinear system identification is one of the most important topics of modern identification.A novel approach for complex nonlinear system identification is proposed based on evolution particle swarm optimization(EPSO) algorithm.In order to increase the diversity of particle,a new evolutionary strategy in the standard particle swarm optimization(PSO) algorithm is introduced.Firstly,in the iterations of algorithm optimization process,Evolution of PSO algorithm is constructed to improve the capacity of global search algorithms by controlling groups of particles in the selection,variation,such as evolutionary operation.Secondly,the problems of nonlinear system identification are converted to nonlinear optimization problems in continual space,and then the EPSO algorithm is used to search the parameter concurrently and efficiently to find the optimal estimation of the system parameters.The feasibility of the proposed method is demonstrated by the identification of a multi-input and single-output Wiener-Hammerstein model.
分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200