基于进化粒子群优化的非线性系统辨识  被引量:4

Nonlinear System Identification Based On Evolution Particle Swarm Optimization

在线阅读下载全文

作  者:戴运桃[1,2] 赵希人[2] 刘利强[2] 

机构地区:[1]哈尔滨工程大学理学院,黑龙江哈尔滨150001 [2]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001

出  处:《计算机仿真》2010年第10期179-182,186,共5页Computer Simulation

摘  要:为解决复杂非线性系统的辨识问题,提出了一种基于进化粒子群优化算法的非线性系统辨识方法。在标准粒子群优化算法的基础上引入一种进化策略,增加粒子的多样性。在算法迭代寻优的过程中,通过对群体中的粒子进行选择、变异等进化操作,构造进化粒子群优化算法,提高算法的全局搜索能力。将非线性系统辨识问题转化为非线性连续域优化问题,利用进化粒子群优化算法进行并行、高效搜索,以获得该优化问题的解。通过对多输入单输出的Wiener-Hammerstein模型进行辨识,验证了该方法的正确性和可行性。Nonlinear system identification is one of the most important topics of modern identification.A novel approach for complex nonlinear system identification is proposed based on evolution particle swarm optimization(EPSO) algorithm.In order to increase the diversity of particle,a new evolutionary strategy in the standard particle swarm optimization(PSO) algorithm is introduced.Firstly,in the iterations of algorithm optimization process,Evolution of PSO algorithm is constructed to improve the capacity of global search algorithms by controlling groups of particles in the selection,variation,such as evolutionary operation.Secondly,the problems of nonlinear system identification are converted to nonlinear optimization problems in continual space,and then the EPSO algorithm is used to search the parameter concurrently and efficiently to find the optimal estimation of the system parameters.The feasibility of the proposed method is demonstrated by the identification of a multi-input and single-output Wiener-Hammerstein model.

关 键 词:进化粒子群 系统辨识 非线性系统 

分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象