检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学电气与自动化工程学院,安徽合肥230009
出 处:《中国电力》2010年第11期87-91,共5页Electric Power
基 金:"十一五"国家支撑计划资助项目(2006BAA01A20)
摘 要:对风力发电并网系统的有效风速测量问题进行研究。鉴于神经网络可应用于非线性系统的模型与辨识,不受非线性模型类的限制,且可给出工程上易于实现的学习算法,提出基于神经网络的有效风速软测量。对实时采集的风力发电机组的风速样本参数集进行分析、训练及拟合,获得相应的有效风速计算网络。仿真结果表明,有效风速软测量可代替风速仪的作用,是一种非常有效的风速估计方法。Problems in speed measurements for wind power generators were studied. Considering that neural networks can be applied to modeling and identification of nonlinear systems without the restrictions of nonlinear models and give the learning algorithm for project to easily realize, a neural network based wind speed soft sensing was proposed. The wind speed sample set by real-time acquisition was analyzed, and the training and matching for an effective calculation network of wind speed were made. Simulation results show that the effective wind speed soft sensing can replaee anemometers and it is a very effective method for the estimation of wind speed.
关 键 词:风力发电 风速测量 神经网络 软测量 变桨距控制
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80