检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李传坤[1] 张卫华[1,2] 王春利[1] 吴重光[2]
机构地区:[1]中国石油化工股份有限公司青岛安全工程研究院,化学品安全控制国家重点实验室,山东青岛266071 [2]北京化工大学信息科学与技术学院,北京100029
出 处:《计算机与应用化学》2010年第10期1418-1420,共3页Computers and Applied Chemistry
基 金:国家高技术研究发展计划(863)(2009AA04Z133)
摘 要:针对石化生产过程的高危性,开发了石化过程在线故障监测系统。通过OPC(OLE for process control)接口从生产现场采集实时数据,采用BP神经网络(back-propagation artificial neural network,BPNN)的模式识别方法,对生产过程进行实时故障监测,及时发现故障工况并提示操作人员采取相应措施,以减小系统运行的风险。BP神经网络的训练数据来自历史数据库,用户根据已发生过的故障工况确定训练数据的时间范围。BP网络模型的各项参数根据多次试验得到。对某工段的10个故障,其故障诊断准确率达到90%以上,具有较高的实时性和准确性。For high-risks are in petrochemical production process,it developed an on-line fault monitoring system for petrochemical process in this paper.Through the OPC(OLE for process control)interface,it collected real-time data from the production field,and monitored the process by using pattern recognition method of back-propagation neural network(BPNN).The system monitored the production process in real-time,detected fault conditions timely and prompted the operator to take measures to reduce the risk of system operation.The training data for BPNN came from the historical database,which the user could determine the time range of it from the fault conditions had already occurred.Parameters of BPNN model obtained from repeated experiments.For the 10 fault of one petrochemical section,the accuracy rate of the fault diagnosis is 90%.The application indicated that the system had a high real-time performance and accuracy.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249