检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周洋[1] 余文武[1] 董相娟[1] 张军红[1]
机构地区:[1]辽宁科技大学材料科学与冶金学院,辽宁鞍山114051
出 处:《辽宁科技大学学报》2010年第3期245-247,257,共4页Journal of University of Science and Technology Liaoning
摘 要:为降低高炉生产焦炭的消耗,对高炉操作参数和燃料比指标进行关联性分析,提出了一种组合聚类分析与神经网络进行高炉焦比指标预测的方法。聚类分析将数据集聚划分为几类,数据的相似度比较高,分类训练相应的神经网络模型,实现高炉焦比指标的预测。结合聚类分析构建的神经网络模型,用某高炉生产数据进行仿真学习,并跟传统的神经网络模型进行比较。结果表明,加入聚类分析的神经网络模型平均绝对误差降低3.13 kg/t,平均相对误差降低5.19%。In order to reduce the coke consumption of blast furnace, a relevance analysis is carried out for operation parameters and fuel ratio of blast furnce, and a prediction method that is combining clustering analysis and neural network for coke ratio of blast furnace is proposed. The data cluster is divided into seveval classes by clustering analysis, the data similarity is high, and the neural network model is used to realize the prediction of coke ratio. By combining the neural network with clustering analysis, the data in one blast furnace is simulated, and the results are compared with the traditional neural network model. The results show that the improved neural network has a higher accuracy, the average absolute error can be decreased by 3.13 kg/t, and the average relative error can be decreased by 5.19%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15