基于聚类分析和神经网络的高炉焦比预测模型  被引量:6

A prediction model for blast furnace coke ratio with clustering analysis and neural network

在线阅读下载全文

作  者:周洋[1] 余文武[1] 董相娟[1] 张军红[1] 

机构地区:[1]辽宁科技大学材料科学与冶金学院,辽宁鞍山114051

出  处:《辽宁科技大学学报》2010年第3期245-247,257,共4页Journal of University of Science and Technology Liaoning

摘  要:为降低高炉生产焦炭的消耗,对高炉操作参数和燃料比指标进行关联性分析,提出了一种组合聚类分析与神经网络进行高炉焦比指标预测的方法。聚类分析将数据集聚划分为几类,数据的相似度比较高,分类训练相应的神经网络模型,实现高炉焦比指标的预测。结合聚类分析构建的神经网络模型,用某高炉生产数据进行仿真学习,并跟传统的神经网络模型进行比较。结果表明,加入聚类分析的神经网络模型平均绝对误差降低3.13 kg/t,平均相对误差降低5.19%。In order to reduce the coke consumption of blast furnace, a relevance analysis is carried out for operation parameters and fuel ratio of blast furnce, and a prediction method that is combining clustering analysis and neural network for coke ratio of blast furnace is proposed. The data cluster is divided into seveval classes by clustering analysis, the data similarity is high, and the neural network model is used to realize the prediction of coke ratio. By combining the neural network with clustering analysis, the data in one blast furnace is simulated, and the results are compared with the traditional neural network model. The results show that the improved neural network has a higher accuracy, the average absolute error can be decreased by 3.13 kg/t, and the average relative error can be decreased by 5.19%.

关 键 词:聚类分析 神经网络 预测 高炉 焦比 

分 类 号:TF703.8[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象