求解二阶椭圆型偏微分方程的双重互易杂交径向边界点法  

The Dual Reciprocity Hybrid Radial Boundary Node Method for Second-order Elliptic Partial Differential Equation

在线阅读下载全文

作  者:汪学海[1] 

机构地区:[1]河南城建学院数理系,河南平顶山467044

出  处:《长江大学学报(自科版)(上旬)》2010年第3期427-429,共3页JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG

摘  要:将双重互易杂交径向边界点法用于求解一般形式的二阶椭圆型偏微分方程。把方程的解分成通解和特解2个部分,通解用杂交径向边界点法求解,特解用双重互易法求解。数值算例表明,用该法求解二阶椭圆型偏微分方程是有效的。The dual reciprocity hybrid radial boundary node method is used to solve the second-order elliptic partial differential equation of general form.The solution is composed of two parts:the general solution and particular solution.The general one is solved by the hybrid radial boundary node method,and the particular one is solved by the dual reciprocity method.Numerical examples show that this method is efficient for solving the second-order elliptic partial differential equation.

关 键 词:椭圆型偏微分方程 杂交径向边界节点法 径向基点插值 双重互易法 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象