检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:俞阿龙[1]
机构地区:[1]淮阴师范学院电子与电气工程系,江苏淮安223300
出 处:《电气自动化》2010年第6期10-12,共3页Electrical Automation
基 金:江苏省高等学校自然科学基础研究基金;淮阴师范学院教授基金资助项目(项目号07KJD510027;08HSJSK02)
摘 要:为了解决电容称重传感器的非线性问题,应用遗传算法训练径向基函数神经网络实现其非线性补偿。介绍非线性补偿的原理和网络训练方法。从实测数据出发,建立了电容称重传感器的非线性补偿模型。该方法能同时优化网络结构和参数,具有全局寻优能力,补偿精度高、鲁棒性好、网络训练速度快、能实现在线软补偿。实验结果表明,本文所用的电容称重传感器非线性补偿方法是有效和可行的。A method used to the capacitance weighing sensor non-linearity compensation is applied based on radial basis function neural network that is trained by genetic algorithms to settle its non-linear problem. The principle and algorithms of neural network are introduced. In this method,the configuration and parameters of non-linearity compensation model are optimized by genetic algorithm. The non-linear compensation model is set up by radial basis function neural network according to measurement data. The proposed non-linearity compensation method has high precision,strong robustness,fast network training speed,good global searching ability and on-line soft compensation ability. The experimental results show the capacitance weighing sensor non-linearity compensation method is efficient and feasible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249