检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学软件学院,长沙410082
出 处:《微计算机信息》2010年第33期235-236,240,共3页Control & Automation
摘 要:随着电子商务的飞速发展,协同过滤推荐系统得到了广泛应用。本文针对传统协同过滤方法难以准确确定目标用户的最近邻居且推荐实时性能不高的问题,引入用户兴趣模型的概念并在此基础上给出一种基于用户兴趣模型聚类的协同过滤算法。实验结果表明,该算法可以提高最近邻居计算的准确性,提高推荐系统实时性能。With the rapid development of e-commerce, collaborative filtering recommendation system has been widely used. In this paper, to address the low accuracy of identifying nearest neighbors and low real-time performance of recommendation in traditional collaborative filtering algorithms, the concept of user interest model is introduced. Based on clustering of user interest model, a collaborative filtering recommendation algorithm is proposed. The experimental results suggest that this algorithm can efficiently improve the accuracy of computing nearest neighbor and improve the real-time performance of recommendation system.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3