和一类积分算子相关的单叶函数的子类  

Subclasses of Univalent Functions Associated with Integral Operators

在线阅读下载全文

作  者:殷建连[1] 

机构地区:[1]淮阴师范学院,江苏淮阴223300

出  处:《大学数学》2010年第6期89-92,共4页College Mathematics

摘  要:在Ruscheweyh定义了解析函数的Ruscheweyh导数[1]之后,许多学者相继研究了与Ruscheweyh导数有关的单叶或者多叶解析函数类.近来,Jung,Ki m和Srivastava[5]引入了下面的单参数积分算子类:Iσf(z)=zΓ2(σσ)∫0zlogtzσ-1f(t)dt,σ>0,f∈Α.算子Iσ和Flett[6]研究的乘数变换密切相关.本文利用算子Iσ定义了两个函数类.首先研究在单位圆内解析的单叶函数类Rσ(A,B),给出函数类的包含关系Rσ(A,B)Rσ+1(A,B),同时也考虑了在积分算子Fλ的作用下的函数类的包含关系以及当λ取特殊值1时的特殊情况.其次研究了函数类Rσ(A,B)中系数为正实数的函数类Sσ(A,B),给出函数f(z)属于类Sσ(A,B)的充分必要条件.Since defined Ruscheweyh derivatives of analytic functions by Ruscheweyh[1],many scholars have studied classes of univalent or multivalent analytic functions associated with Ruscheweyh derivatives([2-4]).Recently,Jung,Kim and Srivastava introduced the following one-parameter family of integral operator: I^σf(z)=2^σ/zΓ(σ)∫0^z(logz/t)^σ-1f(t)dt,σ〉0,f∈Α.The operatorIσ is closely related to the multiplier transformations studied by Flett[6].In this article,making use of operator Iσ,two subclasses are introduced.Firstly,subclasses Rσ(A,B) is introduced in the open unit disk,the inclusion relation of Rσ(A,B)belong to Rσ+1(A,B) is obtained.Some properties of class Rσ(A,B) are preserved in connection with the operator Fλ and some condusions are acquired according to the special parameter λ=1.Secondly,class Sσ(A,B) of analytic functions belonging to Rσ(A,B) with the positive coefficients is investigated,the necessary and sufficient condition of f(z) falling into Sσ(A,B) is obtained.

关 键 词:单叶解析函数 积分算子 子类 充分必要条件 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象