检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何兆成[1] 佘锡伟[1] 杨文臣[1] 陈宁宁[1]
机构地区:[1]中山大学智能交通研究中心广东省智能交通系统重点实验室,广州510275
出 处:《计算机应用研究》2011年第1期199-202,共4页Application Research of Computers
基 金:广东省科技计划资助项目(2009A011601013)
摘 要:针对城市交通系统的动态性和不确定性,提出了基于强化学习的信号交叉口智能控制系统结构,对单交叉口动态实时控制进行了研究。将BP神经网络与Q学习算法相结合实现了路口的在线学习。同时,针对交通信号控制的多目标评价特征,采用基于模糊逻辑的Q学习奖惩信号设计方法,实施对交通信号的优化控制。最后,在三种交通场景下,应用Paramics微观交通仿真软件对典型十字路口进行仿真实验。结果表明,该方法对不同交通场景下的突变仍可保持较高的控制效率,控制效果明显优于定时控制。To address the dynamics and uncertainty in unban transportation system, this paper proposed a traffic signal control system based on reinforcement learning, which was suitable for real-time control in isolated intersection. The proposed method was capable of online learning through a combination of BP neural network and Q-learning algorithm. Furthermore, due to the multi-objective property in traffic signal control, this paper developed a reward design method for Q-learning based on fuzzy logic. Conducted simulated experiments in three traffic scenarios, using the Paramics microscopic traffic simulation software. Experimental results show that the proposed method has high control efficiency in different traffic scenarios, and is significantly better than fixed timing control method.
关 键 词:交通信号控制 强化学习 BP神经网络 模糊评价 Paramics仿真
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3