WSN中基于分布式机器学习的异常检测仿真研究  被引量:13

Simulation Study of Anomaly Detection Based on Distributed Machine Learning for WSN

在线阅读下载全文

作  者:肖政宏[1,2] 陈志刚[1] 李庆华[1] 

机构地区:[1]中南大学信息科学与工程学院,长沙410083 [2]广东技术师范学院计算机科学学院,广州510665

出  处:《系统仿真学报》2011年第1期181-187,共7页Journal of System Simulation

基  金:国家自然科学基金(60573127;60773012);教育部创新团队(IRT0661)

摘  要:安全问题是无线传感器网络应用的关键问题之一。设计了一种基于分布式机器学习的异常检测方案。该方案利用K最近邻算法对传感器网络节点进行分簇,时簇内节点的异常检测采用贝叶斯分类算法,对簇头节点的异常检测采用基于平均概率的方法。利用网络仿真工具NS2构建了入侵检测规则、模拟了网络攻击场景,在此基础上,通过仿真评估了方案的检测率、平均检测率、误检率和平均误检率等性能。仿真实验结果表明,该方案与当前典型的无线传感器网络入侵检测方案相比具有较高的检测率和较低的误检率。Security is one of the most important challenges in wireless sensor network (WSN) applications. A Distributed Machine Learning (DML) based anomaly detection scheme was proposed and designed, where a new clustering approach was presented by using the K nearest neighbor algorithm, Bayesian classification algorithm was used to detect anomaly nodes in inter-cluster, the anomaly detection of cluster-head nodes was detected by using average probability approach. By using network simulation tool NS2, intrusion detection rules were developed, network attack traffic was generated and simulated. And based on this, its detection rate, average detection rate, false positive rate and average false positive rate were evaluated. Simulation results demonstrate that the scheme achieves higher accuracy rate of detection and lower false positive rate than the current important intrusion detection schemes of WSN.

关 键 词:无线传感器网络 分布式机器学习 K-最近邻分簇 贝叶斯分类 异常检测 网络仿真 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象