一种多目标优化问题的理想灰色粒子群算法  被引量:4

Grey particle swarm optimization based on TOPSIS for multi-objective optimization problems

在线阅读下载全文

作  者:巩岁平[1] 任军号[1] 张宝磊[1] 

机构地区:[1]西北工业大学自动化学院,西安710072

出  处:《计算机应用研究》2010年第12期4457-4459,4472,共4页Application Research of Computers

基  金:陕西省自然科学基金资助项目(2005F45);陕西省科技厅软课题项目(2010KRM18)

摘  要:针对逼近理想解的排序方法对Pareto前端的距离跟踪以及灰色关联度能够很好地分析非劣解集曲线与Pareto最优解集曲线的相似性,提出了一种求解多目标优化问题的理想灰色粒子群算法。该算法利用理想解理论与灰色关联度理论来求解粒子与理想解之间的相对适应度和灰色关联度系数,把两者的和定义为相对理想度,通过相对理想度来判别粒子的优劣,以确定个体极值和全局极值。通过四组不同类型的基准函数测试算法性能,并与目标加权法和灰色粒子群算法比较分析,结果表明该算法能够较好地收敛到Pareto最优解集,不但具有较好的收敛性和分布均匀性,而且算法的复杂度并没有增加。A grey particle swarm optimization algorithm based on TOPSIS for solving multi-objective optimization problems,which proposed by taking advantage of technique for order preference by similarity to ideal solution ( TOPSIS) trace Pareto front for distance and grey correlation degree distinguish similarity between curves of non-inferior solution sets and curves of Pareto front solution sets. The algorithm took advantage of TOPSIS theory and grey correlation degree theory to acquire relative fitness coefficient and gray correlation coefficient,and defined their sum as relatively ideal degree,which distinguished advantages and disadvantages of particles and determines individual extreme and global extreme. Validated the algorithm using four different types benchmark cases. The experimental results show that grey particle swarm optimization based on TOPSIS,compared with objective weighting method and grey PSO algorithms,it can find many Pareto optimal solutions distributed onto the Pareto front and do not increase the complexity of the algorithm.

关 键 词:多目标优化 理想解 灰色关联度 粒子群算法 PARETO最优解 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象