检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《成都信息工程学院学报》2010年第3期317-320,共4页Journal of Chengdu University of Information Technology
基 金:成都信息工程学院院管科研项目资助(CRF200804)
摘 要:为了改善传统的人工神经网络,在训练过程中容易陷入局部最小导致应用于水资源评价时存在对训练样本的拟合精度不高的缺点,采用粒子群算法优化人工神经网络的权值和阈值,然后将其应用于中国12个地区的水资源可持续利用系统评价实例中,并和传统的人工神经网络进行了对照。结果表明,基于粒子群算法的人工神经网络和传统的人工神经网络相比,能较好的提高对训练样本的拟合精度,表明基于粒子群算法的人工神经网络,用于水资源可持续利用系统评价是可行的。In order to overcome the drawback of Artificial Neural Network based on back propagation algorithm (BP- ANN), that is, easy entrapment in a local minimum, artificial neural network based on particle swarm optimization (PSO-ANN) was applied to assessing the sustainable utilization level of water resources for 12 areas in China, and its' training result was compared with that of BP-ANN. The results show that the PSO-ANN could simulate the training data better than BP-ANN. It is shown that the PSO-ANN was an alternative method for the assessment of water resources sustainable utilization level.
关 键 词:环境科学 环境评价 粒子群算法 人工神经网络 水资源
分 类 号:X824[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42