检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华为技术有限公司业务与软件产品线,广东深圳518129 [2]江苏技术师范学院计算机工程学院,江苏常州213001
出 处:《计算机技术与发展》2011年第1期210-213,217,共5页Computer Technology and Development
基 金:江苏省自然科学基础研究基金(07KJD20040)
摘 要:齿轮传动工况的复杂性使得其特征参量与故障形式呈非线性映射关系。提出基于Levenberg-Marquardt算法的前向多层神经网络的齿轮故障诊断方法,该方法通过利用二阶导数信息,可以提高收敛速度和增强网络的泛化性能。并以一种齿轮箱故障信号采集实验系统为例,通过MATLAB软件及其神经网络工具建模和仿真研究。结果表明,Levenberg-Marquardt神经网络对齿轮常见故障有良好的识别能力,能稳定、准确地识别各类故障,与标准BP网络相比,收敛速度快且诊断更为准确。Because of the complexity of gear working condition, there are non-linear relationship between characteristic parameters and fault types. Proposes to apply the feed forward artificial neural network with Levenberg-Marquardt training algorithm, to the problem of gear fault diagnosis. By using second derivative information,the network convergence speed is promoted and the generalization performance is enhanced. Taking a certain gearbox fault signal acquisition experimental system for an example, MATLAB software and its neural network toolbox are used to model and simulate. The experiment result shows that Levenberg-Marquardt neural network has good performance for the common gear fault diagnosis and it can identify various types of faults stably and accurately. Furthermore ,compared with conventional BP neural network, the Levenberg-Marquardt neural network reduces training epochs and promotes prediction accuracy.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28