检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学系统工程研究所,西安710049 [2]长安大学信息工程学院,西安710064
出 处:《控制与决策》2011年第1期22-26,共5页Control and Decision
基 金:国家自然科学基金项目(60875043);国家重点基础研究发展计划项目(2007CB311006)
摘 要:鉴于在回响状态网络(ESN)的应用中常使用Wiener-Hopf方程学习输出连接权重,但该方法难以保证自治ESN的稳定性,首先分析了导致该稳定性丧失的原因,提出并证明了自治ESN具备Lyapunov稳定性的一个充分条件;然后将输出连接权重学习问题转化为一个非线性约束的最优化问题,并采用粒子群优化算法求解.仿真结果表明,所提方法既能确保ESN获取高精度的预测输出,又能保ESN的Lyapunov稳定性.In applications of echo state network (ESN), the Wiener-Hopf equation is usually used to learn the ESN's output connect weights, but can hardly ensure the stability of the autonomous ESNs. Therefore, The reasons for the loss of the stability are analyzed firstly, and a sufficient condition of the Lyapunov stability for the autonomous ESNs is proposed and proved. Then the output connect weight learning problem is. translated into an optimization problem with a nonlinear constraint. Particle swarm optimization algorithm is employed to solve the optimization problem. Finally, the simulation results show that the method proposed can not only result in high-precision prediction outputs of the ESN, but also ensure its Lyapunov stability.
关 键 词:神经网络 回响状态网络 LYAPUNOV稳定性 粒子群最优化
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33