运用改进二叉树SVM算法的柴油机振动诊断  被引量:3

Diesel Vibration Diagnosis Using Improved Binary Tree Support Vector Machine Algorithm

在线阅读下载全文

作  者:姚良[1] 李艾华[1] 王涛[1] 

机构地区:[1]第二炮兵工程学院502室,西安710025

出  处:《振动.测试与诊断》2010年第6期689-693,共5页Journal of Vibration,Measurement & Diagnosis

摘  要:提出了一种改进的二叉树支持向量机(support vector machines,简称SVM)算法,用以克服二叉树SVM构造时各级正类样本选择缺乏理论指导的问题。基于最易分割类应最先分割的思想,该方法在定义特征参数类识别率概念的基础上,首先逐级计算每个特征参数对各级SVM所对应各类训练样本的类识别率,然后选择类识别率综合排序结果处于第1位的样本类作为相应级SVM的正类。从缸盖振动信号包络幅值域参数和小波包分解频带能量百分比参数中选取了对气阀故障较为敏感的9个特征,形成了诊断特征向量,使用常用的1-a-r,1-a-1,DDAG以及改进的二叉树SVM多分类方法对6种气阀间隙状态进行了诊断,结果表明,本文提出的改进二叉树SVM方法具有最好的分类效果。This paper presents an improved binary tree-based support vector machine(SVM)multi-class classification algorithm.Guided by the principle that those class samples most easily to be separated should be divided firstly,the method,after defining class recognition rates of feature parameters,calculates level-by-level the class recognition rates of each feature against each class training samples of the corresponding level of SVM.Then,according to the synthetic sorting result of the class recognition rates,the class sequenced first is chosen as the positive class of the corresponding level of SVM.From the cylinder head vibration signal envelopes,nine sensitive temporal domain parameters and wavelet package frequency band power percentage parameters are extracted and formed the diagnosis feature vector.The proposed binary tree SVM,as well as the commonly used 1-a-r(one-against-rest),1-a-1(one-against-one)and decision directed acyclic graph(DDAG)multi-class SVM classification method,are respectively used to recognize six simulative diesel valve gap states.The result shows that among the four multi-class classification methods,the proposed strategy has the best classification precision.

关 键 词:柴油机 气阀机构 振动诊断 二叉树 支持向量机 

分 类 号:TK428[动力工程及工程热物理—动力机械及工程] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象