检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力系统保护与控制》2011年第2期18-22,共5页Power System Protection and Control
摘 要:为了精确测量电力系统的非整数次谐波,提出一种基于粒子群与神经网络的混合算法。该算法通过FFT变换得出谐波个数和精度不高的谐波幅值、相位、谐波次数,然后初始化粒子群,再由粒子群优化算法训练神经网络,得出间谐波的各项参数。同时提出一种基于可变参数的神经元激发函数,使得谐波次数和权值一样参与调整,更有利于检测非整数次谐波。仿真实例表明,该算法能将频率相近的非整数次谐波分离,可快速、精确地获得非整数次谐波的各项参数。In order to measure the power system interharmonics accurately,this paper presents a hybrid algorithm for interharmonics measurement based on particle swarm optimization and neural network.The sampled signal is processed with FFT algorithm,then its number,magnitudes,phases,and orders of harmonics are obtained.After initializing the particle swarm and training the neural network by the particle swarm optimization algorithm,the parameters of interharmonics can be gotten.At the same time,the paper proposes the neural excitation function based on variable parameters,which makes the number of harmonics and weights of neural network participate in the adjustment,thereby it is better for detecting the non-integer harmonics.Simulation results show that close non-interger harmonics can be separated from a signal and parameters of interharmonics are obtained fast and accurately by the algorithm.
关 键 词:电力系统 神经网络 快速傅里叶变换 粒子群优化 谐波分析
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117