关于Poisson群胚的结构  被引量:3

On the Structure of Poisson Groupoids

在线阅读下载全文

作  者:贺龙光[1] 

机构地区:[1]首都师范大学数学系,北京100037

出  处:《数学学报(中文版)》1999年第5期803-808,共6页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金

摘  要:令(ΓP,α,β)是Poisson群胚.如果它的每个α-纤维与β-纤维至多交于一点,则Γ在任一点x的特征分布有直和分解△(x)=△α(x)+△β(x),其中△α(x)Txα-1(u),△β(x)Txβ-1(u)且它们都是△(x)的辛子空间.由此得到辛叶Sx的辛子流形S和S,使在映射α之下,S辛微分同胚于P中辛叶Su,在映射β之下,S反辛微分同胚于P中辛叶Sv(定理4和5).对于一般的Poisson群胚,也可得到类似的S和S,它们差一局部辛微分同胚是唯一确定的(定理6).把以上结果用于辛群胚,还可得到一些更具体的性质(定理7及其推论).Let (Γ P, α, β) be a Poisson groupoid. If its each α-fiber intersects each βfiber not more than one point, then for any x ∈Γ, α(x) = u, β(x) = v, the characteristic distribution of Γ has a decomposition into direct product △(x)= △α(x) + △β(x),such that △α(x) tangents to α-fiber, △β(x) tangents to β-fiber, △α(x) and △β(x) are both Symplectic subspaces of △(x). Since the complete integrabilities of △α(x) and △β(x), there exist Symplectic submanifolds S and S of Symplectic leaf S, such that α: S→α(S) Su is Symplectic diffeomorphism and β: S→β(S) Sv is anti-Symplectic diffeomorphism. Where Su and Sv are Symplectic leaves of P.For general Poisson groupoids, we can obtain S and S with similar properties.Using these results to Symplectic groupoids, we can obtain some more concrete results.

关 键 词:Poisson群胚 辛群胚 辛叶 微分流形 辛子流形 

分 类 号:O186.16[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象