基于支持向量机的模糊稳健优化设计方法  被引量:2

Fuzzy-robust Design Optimization Using Support Vector Machine

在线阅读下载全文

作  者:郭惠昕[1] 任丕顺[2] 宋辉煌[1] 

机构地区:[1]长沙大学机电工程系,长沙410003 [2]湖南机电职业技术学院机械工程系,长沙410000

出  处:《机械科学与技术》2011年第1期43-47,共5页Mechanical Science and Technology for Aerospace Engineering

基  金:湖南省科技计划项目(2001FJ3054);湖南省教育厅科学研究项目(09A009);长沙大学科研基金项目(SF070201)资助

摘  要:在模糊稳健设计中,需要采用随机模拟方法计算模糊概率和非线性约束函数,但计算效率很低。为此,提出了一种基于支持向量机的模糊稳健设计方法。采用支持向量回归机对模糊概率进行仿真计算,采用支持向量回归机或分类机作为非线性约束函数的替代模型,显著降低了模糊稳健优化设计的机时消耗。给出了新方法的具体算法步骤,并通过模糊稳健优化设计实例对所提出的方法进行了验证。The stochastic simulation method is commonly used in fuzzy-robust design optimization to compute the values of fuzzy probability and nonlinear constraint functions,but its low computational efficiency is a problem to be solved.A support vector machine-based method was proposed for fuzzy-robust design optimization to solve this problem.Support vector regression(SVR) was used as a surrogate model of the stochastic simulation method for computing the fuzzy probability.Each of the nonlinear constraints was transformed into a problem of two-class classification,and then support vector classification(SVC) was used as its surrogate model to judge the feasibility of this constraint.By using these surrogate models,the computational efficiency of fuzzy-robust design optimization was distinctly improved.The arithmetic steps of the proposed method were given.An example was given to show that the proposed method is effective.

关 键 词:模糊 稳健设计 支持向量机 优化设计 

分 类 号:TH122[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象