检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙大学机电工程系,长沙410003 [2]湖南机电职业技术学院机械工程系,长沙410000
出 处:《机械科学与技术》2011年第1期43-47,共5页Mechanical Science and Technology for Aerospace Engineering
基 金:湖南省科技计划项目(2001FJ3054);湖南省教育厅科学研究项目(09A009);长沙大学科研基金项目(SF070201)资助
摘 要:在模糊稳健设计中,需要采用随机模拟方法计算模糊概率和非线性约束函数,但计算效率很低。为此,提出了一种基于支持向量机的模糊稳健设计方法。采用支持向量回归机对模糊概率进行仿真计算,采用支持向量回归机或分类机作为非线性约束函数的替代模型,显著降低了模糊稳健优化设计的机时消耗。给出了新方法的具体算法步骤,并通过模糊稳健优化设计实例对所提出的方法进行了验证。The stochastic simulation method is commonly used in fuzzy-robust design optimization to compute the values of fuzzy probability and nonlinear constraint functions,but its low computational efficiency is a problem to be solved.A support vector machine-based method was proposed for fuzzy-robust design optimization to solve this problem.Support vector regression(SVR) was used as a surrogate model of the stochastic simulation method for computing the fuzzy probability.Each of the nonlinear constraints was transformed into a problem of two-class classification,and then support vector classification(SVC) was used as its surrogate model to judge the feasibility of this constraint.By using these surrogate models,the computational efficiency of fuzzy-robust design optimization was distinctly improved.The arithmetic steps of the proposed method were given.An example was given to show that the proposed method is effective.
分 类 号:TH122[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.8.38