检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学数学系,上海200240 [2]浙江师范大学数理与信息工程学院,金华321004
出 处:《上海交通大学学报》2010年第12期1778-1782,共5页Journal of Shanghai Jiaotong University
基 金:国家杰出青年科学基金项目(10725104);上海市优秀学科带头人基金项目(09XD1402500)
摘 要:探讨了余环上的余模范畴如何构成辫子张量范畴.首先假设C是一个余环,则由C构成C上的余模可得余模范畴成为张量范畴的条件.其条件是要求问题中的余环和代数必须为双环和双代数且满足某些相容条件.然后在给定的张量余模范畴上通过一个扭曲卷积可逆映射定义辫子,并探讨得到余环上的余模范畴构成辫子张量范畴的充分必要条件.缠绕模范畴是余环上的余模范畴的一个特例,可将余环上的余模范畴得到的结果应用到缠绕模范畴中.The purpose of this paper is to investigate how the category of the comodules of the coring can be made into a braided monoidal category.Firstly,the conditions making the category into a monoidal category are obtained by using the fact that if C is a coring,then C can be made into a C-comodule.The conditions are that the algebra and coring in question are bialgebra and bi-ring,with some extra compatibility relations.Then,given a monodial category of comodules of the coring,the braiding is constructed by means of a twisted convolution invertible map and the sufficient and necessary conditions making the category form into a braided monoidal category are obtained.The category of entwined modules is contained in the category of the comodules of the coring.Lastly,the construction can be applied to the category of entwined modules as an example.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229