检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《西北工业大学学报》2011年第1期34-38,共5页Journal of Northwestern Polytechnical University
基 金:教育部博士点基金(20096102110027);陕西省工业攻关项目(2008KD7-14)资助
摘 要:由于交通流的复杂性,使得基于交通流参数的交通流状态经典辨识算法的阈值设定十分困难,直接影响辨识效果和效率。文章根据交通流的特性,提出了一种自适应动态学习的分类算法RTRC-TFD,可将其应用于不同背景下交通流的数据流实时分类。实验结果表明:在考虑概念漂移和背景重现的条件下,RTRC-TFD相对于经典检测算法(增量式贝叶斯分类算法)具有更高的分类精度和更快的收敛性。Aim. The introduction of the full paper points out what we believe to be the four characteristics of traffie flow that cause difficulties in determining the thresholds of massive traffic flow; in its last effective RTRC-T17D (recognizing and treating recurring context of traffic flow detection) method, which is ex- plained in section 1. The seven subsections of section 1 are: (1) traffic flow data stream model, (2) classification model, (3) time for context extension, (4) determination of context recurrence, whose detection algorithm framework is given in Fig. 1, (5) pattern of context change, (6) time for context extension, (7) algorithm for recogniz- ing and treating recurring context, whose procedural steps are given in Fig. 2: To verify the effectiveness of our method, Section 2 uses the measurement data in a report by U.S. Department of Transportationtgl to simulate our algorithm; the simulation results, presented in Figs. 3 through 9, and their analysis show preliminarily that when concept drift and recurring context are taken into consideration, our algorithm has better classification precision and convergence speed, thus being more effective for classifying real-time traffic flow data stream from various contexts than the conventional incremental Bayes classification algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117