检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王国锋[1] 李启铭[1] 秦旭达[1] 喻秀[1] 崔银虎[1] 彭东彪[1]
出 处:《天津大学学报》2011年第1期35-39,共5页Journal of Tianjin University(Science and Technology)
基 金:国家自然科学基金资助项目(50805100);国家科技支撑计划资助项目(2008BAF32B11)
摘 要:基于多传感器信号、采用多分类支持向量机(support-vector-machine,SVM)实现了刀具监测的多状态辨识.通过对切削过程中的多向切削力和振动信号等多传感器信息进行分析,分别获得时域、频域和小波域的信息作为磨损分类特征;同时,运用基于一对多(one-versus-all,OVA)的多分类支持向量机对刀具不同磨损状态下的特征数据样本进行训练和识别.对切削过程中不同磨损状态的分类结果表明,多分类支持向量机具有出色的学习能力,能够实现在小样本情况下的不同磨损阶段分类,并具有较高的识别精度.Based on signals of multi-sensor,the recognition of multi-state of tool wear was realized by support-vector-machine(SVM) of multi-classification.The cutting force and vibration signals were analyzed to draw informa-tion of the multi-sensor in time domain,frequency domain and wavelet domain respectively as recognized features.Meanwhile the feature samples of various wear extents were trained and recognized by support-vector-machine of multi-classification based on one-versus-all(OVA),which indicates that SVM is of excellent learning ability,able to realize classification of different wear extents for small samples and of high recognition precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.171.58