检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,哈尔滨150001 [2]黑龙江大学数学科学学院,哈尔滨150080
出 处:《黑龙江大学自然科学学报》2011年第1期8-13,共6页Journal of Natural Science of Heilongjiang University
基 金:Supported by the National Natural Science Foundation of China(G60704004);the Fund of Heilongjiang Education Committee(11541264)
摘 要:研究带有两个时变时滞不确定奇异系统的鲁棒稳定性问题,不确定是线性分式形式。最近,一种包含多个时滞的模型被提出。把此模型推广到奇异系统,通过线性矩阵不等式方法,给出使系统正则,无脉冲和稳定的时滞相关判据。数值例子表明了所提出方法的有效性和优越性。The robust stability problem for uncertain singular systems with two additive time-varying delay components is considered. The uncertainty under consideration is of a linear fractional form. The state-space systems that contain multiple successive state delays are generalized to singular systems. Via linear matrix inequality (LMI) approach, a delay-dependent stability criterion is given to ensure the singular system is regular, impulse free and stable for all admissible uncertainties. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.57