检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川成都610031
出 处:《电气开关》2011年第1期44-47,共4页Electric Switchgear
摘 要:量子粒子群算法是以粒子群中粒子的收敛特性为基础,依据量子物理理论提出的,改变了传统粒子群算法的搜索策略,可使粒子在整个可行解空间中搜索寻求全局最优解。首次将量子粒子群算法用于电力系统无功优化中,以网损最小为目标函数,在IEEE30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于量子粒子群(QPSO)算法在收敛精度、收敛稳定性、寻优时间等方面均较当前常用方法有明显的提高,能有效地应用于电力系统无功优化中,证明了QPSO算法的有效性和优越性。Quantum-behaved particle swarm optimization algorithm is based on the astringency of particles in particle swarm,which is presented according to quantum physics theory.It changes evolutionary search strategy of traditional particle swarm optimization algorithm.Particles can search global optimal solution in whole feasible solution.Quantum-behaved particle swarm optimization algorithm is firstly used in reactive power optimization in power system in this paper and applied for optimal reactive power is evaluated on an IEEE 30-bus power system.The modeling of reactive power optimization is established by taking the minimum network losses as the objective.The simulation results and the comparison results with various optimization algorithms demonstrate that the proposed approach converges to better solutions much faster than the current methods and the algorithm can make effectively use in reactive power optimization.Simultaneously,the validity and superiority of QPSO are proved.
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145