基于MRPs/NPUPF的地磁/加速度计测量的姿态估计新方法  被引量:2

A New Method for Attitude Estimation in Magnetometer and Accelerometer Attitude System Based on MRPs and NPUPF

在线阅读下载全文

作  者:郭庆[1,2] 魏瑞轩[1] 许洁[1] 胡明朗[1] 

机构地区:[1]空军工程大学工程学院 [2]中国人民解放军94456部队

出  处:《宇航学报》2011年第2期336-342,共7页Journal of Astronautics

摘  要:针对现有基于地磁/加速度计的姿态估计算法存在状态误差协方差阵的奇异值和需要准确已知当地地磁矢量的问题,提出了一种新的姿态估计基本方法。该方法采用修正罗德里格参数(MRPs)表示系统动态,消除了采用四元数法导致的状态误差协方差阵的奇异值问题;根据地磁场缓变的特性,将地磁矢量作为平稳过程加入到状态变量中,使得姿态估计不再需要准确已知当地地磁矢量。针对大初始误差和有色噪声对基本方法的影响,通过引入模型误差预测(NPF)和无迹粒子滤波(UPF)方法对其进行改进,提出了基于模型预测无迹粒子滤波(NP-UPF)的地磁/加速度计的姿态估计新方法。仿真结果表明,NPUPF方法可在大初始误差和非高斯条件下实现高精度的姿态估计,提高了基于地磁/加速度计的姿态估计方法的可靠性和实用性。Aiming at the problem of existing attitude estimation algorithms based on geomagnetic and accelerometer measurements,that there are shortages on covariance matrix's singularity and exactly known local geomagnetic vector,a new basic attitude estimation algorithm is proposed.This algorithm uses Modified Rodrigues Parameters(MRPs) to express the dynamics of system,so that the singularity of covariance matrix owing to quaternion's redundancy in expression of system's dynamics is eliminated,and the geomagnetic vector as a stationary process is put into the estate variables because of its slowly varying character,so that the problem of exactly known local geomagnetic vector is solved.In allusion to the performance degradation of attitude estimation method based on MRP and Unscented Particle Filter(UPF) when there are large model error and colored noise,an improved scheme for attitude estimation based on Nonlinear Predictive Unscented Particle Filter(NPUPF) is proposed.Simulation results verify that the method improves the robustness and environmental adaptability of attitude estimation algorithm under the condition of system with large model error and colored noise.

关 键 词:姿态估计 修正罗德里格参数 地磁 模型误差预测 无迹粒子滤波 模型预测无迹粒子滤波 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象