检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛文林[1] 李天斌[1] 熊国斌[2] 张广洋[2]
机构地区:[1]成都理工大学地质灾害防治与地质环境保护国家重点实验室,成都610059 [2]四川雅西高速公路有限责任公司,成都610000
出 处:《工程地质学报》2011年第1期88-92,共5页Journal of Engineering Geology
基 金:国家自然科学基金项目(40772176);四川省青年科技基金项目(09ZQ026-083)
摘 要:本文将数据挖掘的新方法支持向量机应用于隧道围岩分级。支持向量机是一种基于统计学习理论的新的学习算法,比神经网络算法能更好地解决小样本问题。选用岩层厚度、岩体结构、嵌合程度、风化程度、地下水特征、节理发育程度、榔头敲击声和地应力等8个定性指标作为评判因子,用泥巴山隧道采集的实际数据作为样本对不同核函数的支持向量机进行训练,并得到评判因子与围岩级别的映射关系,从而可以对未知的围岩样本进行级别判别。判别结果表明:采用多项式核的支持向量机对围岩级别进行判别有较高的准确率,是一种值得推广和应用的围岩智能分级方法。A new data mining method of Support Vector Machines(SVM)is applied on the classification of rock mass in tunnels.SVM is a novel powerful leaning method that based on Statistical Learning Theory.SVM can solve small-sample learning problems better than neural network.Parameters including rock layer thickness,rock mass structure,inlay condition,weathering condition,groundwater characteristic,joint condition,hammer knocking sound and ground stress,are chose as the judge factors.Data samples from Niba Mountain tunnel are used to train the SVM with different kernels.The mapping relationship between judge factors and rock mass classes is used.The SVM can discriminate and provide class-unknown data samples of rock mass.Result of the classification shows that SVM with polynomial kernel has a high accuracy when it is used to classify the rock mass.So this is an intelligent classification of rock mass method that can be applied to classify rock mass in tunnels.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46