检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学电子信息与电气工程学院,上海200240 [2]山东轻工业学院电子信息与控制工程学院,济南250353
出 处:《上海交通大学学报》2011年第2期173-178,共6页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金资助项目(61074150)
摘 要:针对在敌情信息不明环境中无人机侦查路径规划问题,建立了车辆路由问题模型(VRP),提出了基于分散搜索的改进混合搜索算法.基于Bayes方法计算出点到点之间的威胁概率,并生成了一个赋权图,将无人机路径规划问题转化为车辆路由寻优模型.采用混合路径规划算法求解.该算法将模拟退火嵌入到分散搜索算法的框架中,充分利用了分散搜索的全局搜索能力与模拟退火的局部搜索能力来优化无人机的侦查路径,混合算法在保证时效性的同时提升了求解的质量.仿真结果验证了算法的有效性.The unmanned aerial vehicle(UAV) path planning problem in uncertain and adversarial environment is modeled as a vehicle routing problem(VRP). After that a revised hybrid algorithm based on scatter search optimization was proposed.First,with the prior surveillance and experiential evaluation,Bayes rule is used to compute the probability of threats of flight across each pair of neighboring points,and then a weighted graph can be generated based on the threat probability map in the given planning area.The original problem is transformed to be a VRP.Then,a hybrid routing algorithm is adopted to solve the VRP problem.The proposed algorithm incorporates simulated annealing(SA) method into scatter search(SS),such that it can take advantages of both the global search ability of SS and the local optimization capability of SA in order to get good paths.The proposed method can improve the quality of solutions while not(incurring) additional time.Finally,computational experiments were conducted to verify the method.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.133.140