基于模糊神经网络空间矢量调制的直接转矩控制  

Direct Torque Control Based on Fuzzy-neural Network Space Vector Modulate

在线阅读下载全文

作  者:蔡斌军[1] 

机构地区:[1]湖南工程学院应用技术学院,湘潭411101

出  处:《湖南工程学院学报(自然科学版)》2011年第1期4-8,共5页Journal of Hunan Institute of Engineering(Natural Science Edition)

基  金:湖南省教育厅科研资助项目(09C261)

摘  要:为了改善基于空间矢量调制的直接转矩系统的动态性能及低速性,分析了传统SVM-DTC中采用两个PI控制器来产生参考电压矢量,存在PI控制器参数难以确定的问题,提出了一种基于模糊-神经网络空间矢量调制(SVM)的异步电机直接转矩控制(DTC)策略.阐述了产生磁链参考电压矢量的模糊控制器和产生转矩参考电压矢量的神经网络控制器的具体设计过程,同时对该控制方法在基于simulink的仿真软件和基于DSP2812控制芯片的实验装置分别进行了仿真与实验,并与传统SVM-DTC进行了比较.仿真和实验结果表明,模糊-神经网络SVM-DTC控制系统动态性能好,可有效提高系统的低速性能.To improve SVM--DTC system low-speed performance,two PI controllers are used to generate reference voltage vector in conventional SVM--DTC. The parameters of PI controller are difficult to deter- mine. A new direct control(DTC) strategy of induction motors based on fuzzy-neural space vector modula~ tion(SVM) is proposed. The flux fuzzy controller has two inputs(flux error and its change rate) and one output(the flux component of reference voltage vector) ,while the torque neural network controller has two inputs(flux error and its change rate) and one output(the torque component of reference voltage vector). Simulations are carried out to verify the proposed strategy, and the simulation results are compared with conventional SVM- DTC. The simulation and experiment are carried out based on simulation and DSP2812. The simulation and experiment results verify that fuzzy neural network SVM--DTC is capable of effectively improving the control performance, especially improving SVM--DTC system low-speed performance.

关 键 词:直接转矩控制 空间矢量调制 模糊控制 神经网络 低速性 

分 类 号:TM301.2[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象