双对称线性矩阵方程的最佳逼近解(英文)  被引量:1

THE ANTI-SYMMETRIC OPTIMAL APPROXIMATION SOLUTION FOR A LINEAR MATRIX EQUATION PAIR

在线阅读下载全文

作  者:林宏程 

机构地区:[1]湖南对外经济贸易学院理学部,湖南长沙410015

出  处:《数学杂志》2011年第2期233-244,共12页Journal of Mathematics

摘  要:本文讨论了Wang和Chang的双线性矩阵方程(A^T XA,B^T XB)=(C,D)对称解的一致性条件.利用Hilbert空间的投影定理、商奇异值分解及其通解表达式和典型相关分解(CCD)的有效工具,获得了关于这个矩形方阵对的最小二乘问题的明确的解析表达式反对称(或最小Frobenius范数反对称解作为特例)最佳逼近解.This article discusses the consistent conditions of the symmetric solution and symmetric least squares solution for the linear matrix equation pair(A^T X A,B^T XB) =(C,D) obtained by Chang and Wang(1993).By using the projection theorem in Hilbert space,the quotient singular value decomposition(QSVD) and the canonical correlation decomposition(CCD) for efficient tools to obtain the explicit analytical expression of the anti-symmetric optimal approximation solution(or the minimum Frobenius norm anti-symmetric solution as a special case) for the least-squares problem of this matrix equation pair.

关 键 词:线性矩阵方程 最小二乘法问题 最佳逼近解 典型相关分析分解(CCD) 商奇异值分解(QSVD) 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象