检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海师范大学学报(自然科学版)》2011年第1期1-14,共14页Journal of Shanghai Normal University(Natural Sciences)
基 金:supported by National Natural Science Foundation of China(10971139)
摘 要:研究平面多项式系统极限环的个数是著名的希尔伯特第16问题的重要部分,由于这一问题十分困难,人们不断研究一些具有某种对称性的系统,例如,关于Zq等变平面系统的一般形式及其极限环的个数已有很多研究.研究了Zq可逆等变平面系统.首先通过变换把实系统化为与之等价的复系统,研究系统在复平面下具有可逆等变的性质,给出了所有Zq可逆等变平面系统的一般形式,并作为推论具体给出所有不高于六次的平面多项式系统具有Zq(q=2,4,6,8.)可逆等变性质的具体形式.这一具体形式简洁明了,易于使用.作为应用特别研究了一类五次Z4可逆等变哈密顿系统的Z4可逆等变七次多项式扰动系统(称之为Z4可逆等变近哈密顿系统),利用Melnikov函数的展开式和Hopf分支方法,得到这一Z4可逆等变近哈密顿系统至少能从中心分支出24个小极限环,并给出了其极限环的分布.最后让七次Z4可逆等变扰动项中某些参数为零的情况下使之成为五次Z4可逆等变扰动多项式,研究所得Z4可逆等变五次近哈密顿系统,发现在五次Z4可逆等变多项式的扰动下,系统可分支出8个小极限环,这8个小极限环可形成2种不同的极限环分布.In this paper,we discuss planar polynomials systems with some symmetry.We specially give a general form of Zq-reversible-equivariant planar systems.Then we study the number of limit cycles for some Z4-reversible-equivariant near-Hamiltonian systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.139.248