检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学岩土工程研究所,广州510006
出 处:《岩土力学》2011年第4期1018-1024,共7页Rock and Soil Mechanics
基 金:广东省自然科学基金项目(No.6021462);广东省重点扶持学科基金和博士基金项目(No.09033)
摘 要:通过对广州市南沙地区大量软土物理力学试验和微结构分析,获取了40组软土试样的物理力学性质指标和微观结构参数。综合运用灰色关联分析的数据分析能力和人工神经网络的非线性映射功能,建立了软土物理力学性质指标与微结构参数的灰色关联-径向基神经网络模型。该模型利用灰色关联分析方法对数据进行预处理,提取重要因子作为网络的输入,而径向基神经网络充分利用样本数据信息,自适应确定隐含层节点个数、径向基函数中心、宽度以及网络的权系数。克服了传统RBF网络隐层节点数为样本个数,当数据较多时导致网络结构庞大、学习速度慢的缺点。通过模型A和模型B的实例研究表明,该方法简化了网络结构,提高了训练速度和预测精度,为软土物理力学性质与微结构参数关系的定量研究提供了一条有效途径。Through a large number of physico-mechanical tests and microstructure analysis of soft soils in Nansha area, Guangzhou, China, 40 groups of physico-mechanical indices and microstructure parameters are obtained. Using data analysis ability of grey-relation analysis method and nonlinear mapping ability of artificial neural networks, a model for the relationship between physico-mechanical indices and microstructure parameters of soft soil is established based on grey-relation analysis and radial basis function (RBF) neural networks. In this model, grey-relation analysis is applied to preprocess data and extract key components as the input of the neural networks. RBF algorithm can fully utilize the information contained in the training data, adaptively choose the centers of radial basis functions, the widths and the weights of networks; therefore, the problems of determining node number of hidden layer and centers, slow learning speed and weaken generalization ability of traditional RBF neural networks when the input data are generous and complex are solved. Model A and model B show that this method can reduce the structure of neural networks, and raise efficiency of training and accuracy of prediction, and provide an efficient way to quantitatively study about relationship between physico-mechanical properties and microstructure parameters of soft soils.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15