检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学复杂工程系统测量与控制教育部重点实验室,南京210096 [2]江苏大学,镇江212013
出 处:《中国机械工程》2011年第7期830-835,共6页China Mechanical Engineering
基 金:国家自然科学基金资助项目(60934008;50875046)
摘 要:机器数大于2的流水型知识化制造单元调度属于NP完全问题,至今尚无完全有效的算法。针对该类问题的自身结构特性,提出一种具备学习能力的自进化算法。该算法采用强化学习中值迭代策略,在运行中能够从环境中获取相应知识,提高其搜索能力。提出一种混合核支持向量机对值函数进行逼近,以解决学习过程中状态过多的问题。数值仿真实验表明,算法对该类问题具有很好的学习进化能力。The flow-shop-like knowledgeable manufacturing cell(whose machine number is greater than 2) scheduling is a NP-complete problem and has not a completely valid algorithm for it until now.A self-evolution algorithm with learning ability was proposed according to its structure and characteristics.By adopting the value iterative strategies of reinforcement learning,the algorithm can absorb the corresponding knowledge from its environment during its running and improve its search ability.The approximation of value function is completed by use of the SVM with a hybrid kernel to avoid the too many states in learning process.Numerical experiments show that the algorithm has excellent performance of learning and evolution for the problem.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186