构造非线性偏微分方程高阶守恒律的直接法(英文)  被引量:1

Direct algorithms for constructing high-order conservation laws of nonlinear partial differential equations

在线阅读下载全文

作  者:梅建琴[1] 张晶晶[1] 张鸿庆[1] 

机构地区:[1]大连理工大学数学科学学院,辽宁大连116024

出  处:《大连理工大学学报》2011年第2期304-308,共5页Journal of Dalian University of Technology

基  金:"973" The National Key Basic Research Project of China(2004CB318000);Fundamental Research Funds for the Central Universities and Science Foundation of Dalian University of Technology(No.SFDUT200808)~~

摘  要:提出了构造非线性偏微分方程高阶守恒律的直接法并在Maple上实现,算法易操作,效率高.作为算法的应用,考虑了许多高维非线性偏微分方程,如Caudrey-Dodd-Gibbon-Sawada-Kotera方程、Boiti-Leon-Manna-Pempinelli方程和(2+1)-维Burgers方程以及It方程组,得到了它们的新的高阶守恒律.该算法还可用于构造更高维更高阶的守恒律,亦可推广至微分-差分方程(组).The direct algorithms for constructing the conservation laws of nonlinear differential equations are put forward and implemented in software Maple,which are easy for operation and high efficiency.As applications of the algorithms,some higher-dimensional nonlinear differential equations,such as Caudrey-Dodd-Gibbon-Sawada-Kotera equation,Boiti-Leon-Manna-Pempinelli equation and(2+1)-dimensional Burgers equation together with It equations are considered.As a result,some new high-order conservation laws of these equations have been obtained.The algorithms can be used to construct more higher order and dimension of conservation laws and be generalized to differential-difference equations.

关 键 词:守恒律 Caudrey-Dodd-Gibbon-Sawada-Kotera方程 (2+1)-维Burgers方程 Boiti-Leon-Manna-Pempinelli方程 It方程组 

分 类 号:O175.4[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象