检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学汽车学院,上海201804 [2]东京大学生产技术研究所
出 处:《同济大学学报(自然科学版)》2011年第3期405-410,共6页Journal of Tongji University:Natural Science
基 金:国家"八六三"高技术研究发展计划(2007AA04Z132);高等学校创新引智计划资助项目(B08019)
摘 要:分析了汽车悬架系统和轮胎的非线性弹簧力和阻尼力,建立了二自由度汽车非线性垂向振动系统的动力学模型.结合增量谐波平衡方法(incremental harmonic balance method,IHBM),对该系统的动力学行为进行定量研究.推导其增量谐波平衡过程,研究增量谐波平衡法的迭代计算过程,采用几个不同的谐波次数,计算系统的近似周期解,确定周期解的稳定性;同时,以路面激励圆频率为参数进行了跟踪计算,得到系统主共振时的幅频响应特性.近似解的计算结果与数值计算结果的对比表明,增量谐波平衡方法的精度可灵活控制,且收敛速度快,结果可靠,是汽车强非线性动力学行为研究的有效方法.Based on an analysis of nonlinear spring forces and damping forces for automotive suspension and tire,a nonlinear dynamic model of automobile heave vibration system with two degress of freedom(DOF) was built.Then,an incremental harmonic balance method(IHBM) was adopted to quantitatively study the system.The process of IHBM was derived,and the iterative process was studied.Meanwhile,the steady periodic solution of automobile nonlinear system was obtained with some harmonic numbers and stability of the periodic solution was studied as well.Based on the tracing calculation with the circular frequency of road excitation as parameter,the amplitude-frequency response characteristic of the system at the primary resonance was obtained.The numerical simulation of the approximate periodic solution by the IHBM was compared with the numerical method.Results show that the IHBM is an effective way to analyze both weak and strong nonlinear dynamics in engineering practice.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151