检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈建宏[1,2] 施飞[1,2] 郑海力[1,2] 韩玉建[1,2]
机构地区:[1]中南大学资源与安全工程学院,湖南长沙410083 [2]湖南省深部金属矿产开发与灾害控制重点实验室,湖南长沙410083
出 处:《矿业研究与开发》2011年第2期73-75,共3页Mining Research and Development
基 金:国家自然科学基金资助项目(50774092);全国优秀博士学位论文专项资金资助项目(200449)
摘 要:针对矿井涌水系统的复杂性和随机性,提出采用神经网络修正灰色残差模型对矿井涌水量进行预测,既利用GM(1,1)模型能较好预测涌水量发展趋势的特点,又利用神经网络对于复杂非线性系统的优越性,保证了模型的精度,克服了单个模型所存在的不足。结果表明,该模型方法在矿井涌水量的预测中是可行的。In view of the complexity and randomicity of mine inflow,a BP neural network-based corrected residual gray model is proposed to predict the inflow rate of mine water.GM(1,1) model can forecast developing trend of water inflow,and neural network has superiority over complex nonlinear system.The corrected residual GM(1,1) model can overcome the shortage of residual GM(1,1) model,so the forecast accuracy of mine water inflow can be assured.The results of a case study show that the corrected residual GM(1,1) model is feasible in the prediction of mine water inflow.
分 类 号:TD742[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28