基于核主成分分析的步态识别方法  被引量:8

Gait recognition method based on kernel principal component analysis

在线阅读下载全文

作  者:陈祥涛[1] 张前进[2] 

机构地区:[1]河南科技大学现代教育技术与信息中心,河南洛阳471003 [2]河南科技大学电子信息工程学院,河南洛阳471003

出  处:《计算机应用》2011年第5期1237-1241,共5页journal of Computer Applications

基  金:河南省高等教育信息化工程项目(2007xxh006)

摘  要:为了从多帧步态序列中更有效地提取步态特征并实时性地进行身份识别,提出一种有效的基于平均步态能量图(MGEI)的核主成分分析(KPCA)的身份识别方法。通过预处理技术提取出运动人体的侧面轮廓,根据步态下肢的摆动距离统计出步态周期,得到MGEI。KPCA采用非线性方法提取主成分,描述待识别图像中多个像素之间的相关性。利用KPCA的方法在高维空间对MGEI提取特征,选择合适的核函数,用方差倒数加权欧氏距离进行身份识别。实验结果表明,该算法具有较好的识别性能,并且耗时大大缩短。Concerning the issue of extracting features more efficiently from a sequence of gait frames and real-time recognition,an effective human recognition method based on Mean Gait Energy Image(MGEI) was described,which utilized Kernel Principal Component Analysis(KPCA).A pre-processing technique was used to segment the moving silhouette from the walking figure.The algorithm obtained the gait quasi-periodicity through analyzing the width information of the lower limbs' gait contour edge,and the MGEI was calculated from gait period.KPCA extracted principal component with nonlinear method and described the relationship among three or more pixels of the identified images.In this paper,KPCA could make use of the high correlation between different MGEIs for feature extraction by selecting the proper kernel function,and Euclidean distance weighted by variance reciprocal was designed as the classifier.The experimental results show that the proposed approach has better recognition performance and the computation time is greatly reduced.

关 键 词:步态识别 平均步态能量图 核主成分分析 特征提取 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象