检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊洪斌[1]
出 处:《江西科学》2011年第2期153-155,共3页Jiangxi Science
摘 要:主要研究了模m二次剩余系之Wilson定理,研究表明,若模m有原根,-1为模m的二次剩余,则模m的二次剩余系全体元素之积modm的同余数为-1;若不然,则模m二次剩余系全体元素之积modm的同余数为1。且模m二次非剩余系全体元素之积与二次剩余系全体元素之积modm的同余数相反。若m无原根,则模m二次剩余系全体元素之积与二次非剩余系全体元素之积modm的同余数相等。Wilson Theorem on Quadratic Residue System of Modulus m has been studied in this paper.It shows that if the modulus m has primitive roots,and-1 is a quadratic residue of the modulus m,then the congruent number of the product of all the quadratic residues is-1,otherwise,the congruent number of the product of all the quadratic residues is 1,and the congruent numbers between the products of all the quadratic nonresidues and residues of the modulus m are contrary.If the modulus m has no primitive roots,the congruent numbers between the products of all the quadratic nonresidues and residues of the modulus m are equal to each other.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38