基于自适应子空间在线PCA的手势识别  被引量:8

Hand Gesture Recognition Based on Online PCA with Adaptive Subspace

在线阅读下载全文

作  者:姚明海[1] 瞿心昱[1] 

机构地区:[1]浙江工业大学信息工程学院,杭州310023

出  处:《模式识别与人工智能》2011年第2期299-304,共6页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金项目(No.61070113);浙江省自然科学基金项目(No.20080376)资助

摘  要:基于视觉的手势识别系统的学习一般是离线的,导致系统对新手势的正确识别需要重新离线学习,因此系统实时性、可扩展性和鲁棒性较差,不适合认知发育的智能框架.文中提出了基于自适应子空间在线PCA的手势识别方法.该方法通过计算样本投影系数向量的PCA来实现子空间在线更新,并根据新样本与已学习样本的差异程度,调整子空间更新策略,使算法自适应于不同情况,减少计算和存储开销,实现增量的在线学习和识别手势的目的.实验表明,本文方法能处理未知手势问题,实现手势在线积累和更新,逐渐增强系统识别能力.The learning method for hand gesture recognition system based on vision is commonly off-line, which results in repeated off-line learning when new hand gestures come. Its real-time performance, expansibility and robustness are poor. In this paper, a method named online principle component analysis (PCA) with adaptive subspace is proposed for hand gesture recognition. The subspace is updated online by calculating PCA of sample coefficients. The subspace updating strategy is adjusted according to the degree of difference between new sample and learned sample. The algorithm is able to adapt to different situations and reduce the cost of calculation and storage. The incremental online learning and recognition of hand gestures are realized by the proposed algorithm. Experimental results show that the proposed method solves the unknown hand gesture problem, realizes online hand gesture accumulation and updating and improves the recognition performance of system.

关 键 词:在线学习 在线PCA 自适应子空间 手势识别 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象