基于新型神经网络的乐曲内容检索技术研究  

A study of music content search technique based on novel neural network

在线阅读下载全文

作  者:喻晓雯[1] 张楠[2] 张勇[2] 

机构地区:[1]广州大学,广州510640 [2]华南理工大学,广州510640

出  处:《应用声学》2011年第3期202-206,共5页Journal of Applied Acoustics

摘  要:基于文字符号的检索体系,对于音乐材料效果不佳,基于内容的音乐信息检索会成为今后发展的关键。针对音乐检索技术的核心——音频特征描述和特征匹配,本文以音高和相对节奏为音乐作品的关键特征,发展了非毗邻层连接的前馈神经网络结构,给出了误差反传训练算法的分类器,并进行了试验研究。结果表明,非毗邻层连接的前馈神经网络结构有优越的识别性能和极快的收敛速度。The search system based on letter sign has bad effects on music material. Search of music information based on contents becomes the key of development from now on. We aim at the core of music search technique: audio frequency characteristic description and characteristic match. This paper takes the pitch and the opposite rhythm as the key characteristics of music work and develops the front feedback nerve network structure of non-adjacent layer conjunction, and gives the machine that the error margin is inverted spread the classification of training the calculate way and carries on to experiment a research. The result indicates that the front feedback nerve network structure of non-adjacent layer conjunction has predominant function on identifying and splitting velocity on convergence.

关 键 词:音乐 内容检索 特征 神经网络 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象