检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《燃气涡轮试验与研究》2011年第2期20-22,48,共4页Gas Turbine Experiment and Research
摘 要:建立了基于粒子群优化的轴流压气机机匣压力支持向量机预测模型。利用支持向量机的强大非线性映射能力,实现了对某型轴流压气机机匣压力时间序列的非线性预测,并运用粒子群优化算法对支持向量机的重要参数进行了优化,增强了预测模型对混沌动力学的联想和泛化推理能力,提高了预测的精度和稳定性。而针对发动机台架试验数据的预测结果证明了方法的有效性,这一结果对于轴流压气机内部流动特性研究及稳定性监控具有重要意义。Based on particle swarm optimization and support vector machines,a forecasting model for compressor casing wall pressure is presented.The strong nonlinear mapping capability of the support vector machines is used to implement nonlinear forecasting of the measured time series of compressor casing wall pressure.Particle swarm optimization is employed to optimize important parameters of support vector machines.The association and generalization capabilities of forecasting model on chaos dynamics are increased,thus the forecasting precision and stability are improved.Forecasting results based on the experimental data has proved the effectiveness of the forecasting model,which may serve as a promising stability monitoring method for axial flow compressors.
分 类 号:V231.1[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166