检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海铁道大学计算技术研究所,上海200331
出 处:《计算机研究与发展》1999年第9期1080-1085,共6页Journal of Computer Research and Development
基 金:上海市教委重点学科项目基金
摘 要:文中首先对模糊系统的两类主要的学习算法:梯度下降和遗传算法方法进行了深入分析,并指出了存在的问题.然后,在此基础上提出了一种针对半梯形和三角形隶属度函数的保证隶属度函数ε完备性和模糊集语义一致性的参数调整方法.并基于上述方法实现了一种新的基于遗传算法并利用梯度下降的快速模糊系统学习算法.最后通过实例进行了模拟,验证了该方法的高效性。In this paper, two kinds of learning methods of fuzzy systems are analyzed first,using genetic algorithm and the gradient descent method. They have completeness of membership functions and fuzzy rules and other problems, such as the damage of the shapes of membership functions. The damage of completeness of membership functions leads to no useful rules which are available when some data are inputted. Then, a method that guarantees the ε\|completeness of membership functions and consistence of fuzzy sets semantics is proposed. Moreover, a new fast learning method of fuzzy systems both are based on genetic algorithms and gradient descent method is proposed. Some experiments are also made and the simulation result is presented to show the high effectiveness and some other advantages of guaranteeing the completeness of membership functions and consistence of fuzzy sets semantics.
分 类 号:N94[自然科学总论—系统科学] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147