检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北大学数学与计算机学院河北省机器学习与计算智能重点实验室,河北保定071002
出 处:《计算机研究与发展》2011年第5期841-847,共7页Journal of Computer Research and Development
基 金:国家自然科学基金项目(60903088);河北省自然科学基金项目(F2010000323;F2009000227;F2008000635);河北省应用基础研究重点项目(08963522D)
摘 要:计算机博弈是人工智能领域中的热点研究课题.传统计算机博弈模型使用极大极小搜索与评估函数相结合的方式,棋力高低依赖于搜索的深度.在计算性能较低的平台上,搜索深度加深会延长反应时间.因此,提出了一种应用不平衡学习技术使用专家谱训练分类器的机器博弈解决方案,反应时间只相当于一层搜索,且更能体现学习的特性.使用3种经典的不平衡学习方法训练神经网络,并对结果进行了比较.验证了使用分类器模拟中国象棋策略的可能性,以及不平衡学习技术在该策略建模过程中起到的关键作用.Computer chess game(CCG) is an important topic in the field of artificial intelligence.This technique is widely used in some entertainment PC games and chess games on different platforms.Most CCG systems are developed based on the combination of game tree searching and evaluation functions.When using game tree searching method,the level of the computer player depends on the searching depth.However,deep game tree searching is time-consuming when the games are applied on some mobile platforms such as mobile phone and PDA.In this paper,a novel method is proposed which models Chinese chess strategy by training a classifier.When playing chess games,the trained classifier is used to predict good successor positions for computer player.The training procedure is based on imbalance learning and it uses Chinese chess game records as the training sets.Specifically,the training sets extracted from game records are imbalanced;therefore,imbalance learning methods are employed to modify the original training sets.Compared with the classical CCG system,this new method is as fast as 1-level game tree search when playing games,and it contains an offline learning process.Experimental results demonstrate that the proposed method is able to model Chinese chess strategies and the imbalance learning plays an important role in the modeling process.
关 键 词:不平衡学习 计算机博弈 中国象棋机器博奕 分类器博弈模型 人工神经网络
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15