检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2011年第16期35-37,共3页Computer Engineering and Applications
基 金:国家自然科学基金No.50579061~~
摘 要:粒子群优化算法(PSO)是一种新兴的优化技术,它的思想来源于人工生命和演化计算理论。PSO通过粒子追随自己找到的最好解和整个群的最好解来完成优化。粒子群算法简单容易实现,可调参数少,已经得到了广泛研究和应用。提出了一种结合有限元方法求解偏微分方程反问题的混合粒子群算法,在对多个抛物型方程反问题模型测试的数值模拟中都得到了较好的结果,体现了该算法的有效性、通用性和稳健性。Particle Swarm Optimization(PSO) is a new optimization technique originating from artificial life and evolutionary computation.The algorithm completes the optimization through following the personal best solution of each particle and the global best value of the whole swarm.PSO can be implemented with ease and few parameters need to be turned.It has been successfully applied in many areas.It can get preferable results in some inverse problems of parabolic equation model's numerical simulations.The results show that the approach is effective,general and robust.
关 键 词:群体职能 抛物型方程 演化算法 粒子群优化 反问题
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198