检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学华西医院生物治疗国家重点实验室,四川成都610041
出 处:《化学研究与应用》2011年第6期696-701,共6页Chemical Research and Application
基 金:国家自然科学基金(20872100)资助
摘 要:本文应用一种组合遗传算法和共轭梯度法的支持向量机(GA-CG-SVM)方法建立了药物诱导磷脂质病分类预测模型。首先对描述符进行了优化,选出了19个描述符用于模型的构建,所建模型对训练集的预测准确率为81.6%,对测试集的预测精度为87.5%,说明所建SVM分类模型不仅能正确预测训练集药物诱导的磷脂质病,也对其他化合物具有很好的预测能力。In this study,a support vector machine(SVM)method combined with genetic algorithm(GA)and conjugate gradient(CG)algorithm was used to build a classification prediction model of drug-induced phospholipidosis.The descriptors were optimized firstly and 19 descriptors were finally selected to construct the SVM model.The overall prediction accuracy of the established model for the training set is 81.6%,and that for the test set is 87.5%.These show that the SVM model not only can correctly predict the training set drug molecules but also has good prediction ability to compounds outside of the training set.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28