二阶双曲方程有限元解的最优误差分析  

Optimal Error Estimates for the Finite Element Solution of Second-order Hyperbolic Equation

在线阅读下载全文

作  者:王琳[1] 刘慧芳[1] 

机构地区:[1]河南机电高等专科学校基础部,河南新乡453000

出  处:《河南机电高等专科学校学报》2011年第2期36-37,共2页Journal of Henan Mechanical and Electrical Engineering College

摘  要:讨论了一类二阶双曲方程在非协调有限元下有限元解与真解的误差估计。利用该非协调有限元的性质及超逼近方法,得到了与协调元相同的最优误差估计。This paper discussed the error estimates between the finite element solution and the real solution under the nonconforming finite element for a kind of second - order hyperbolic equations. By the use of the noncon forming finite element quality and the method of superclose, we got the same optimal error estimates with the nonconforming finite element method.

关 键 词:二阶双曲方程 有限元 超逼近 误差估计 

分 类 号:O242.21[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象