检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:连丽婷[1] 肖昌汉[1] 杨明明[1] 周国华[1]
机构地区:[1]海军工程大学电气与信息工程学院,武汉430033
出 处:《上海交通大学学报》2011年第6期809-813,共5页Journal of Shanghai Jiaotong University
基 金:中国人民解放军总装备部基金(51310040501);国家海洋专项基金(420050101)资助项目
摘 要:针对目前线性建模解决舰艇内外磁场推算问题时存在的困难,从非线性优化的角度出发,建立了内外磁场之间的误差反向传播神经网络预报模型.为了改善网络的固有缺陷,利用粒子群算法优化网络的初始权值与阈值,使其能够逃离局部最优点,增强了网络的鲁棒性.该方法避免了利用线性化方法存在的诸多困难,可实现舰艇内外磁场推算.利用船模实验对网络预测的准确性进行了验证,结果表明其换算精度较线性方法有所提高,满足工程实际需求.The magnetic anomaly created by ferromagnetic submarines may endanger their invisibility.Nowadays,a new technique called closed-loop degaussing system can reduce the magnetic anomaly especially permanent one in real-time.To achieve it,a model which is able to predict off-board magnetic field from on board measurements was required.Many researchers settle the problem by a linear model.A back propagation neural network model was proposed to solve it.The model can escape local optimum thanks to optimizing the initial weight values and threshold values by particle swarm optimization algorithm.The method can avoid many problems from linear model and its high accuracy and good robustness was tested by a mockup experiment.
分 类 号:TM153.1[电气工程—电工理论与新技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222