检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈诚[1] 廖桂平[1] 李锦卫[1] 史晓慧[1]
机构地区:[1]湖南农业大学农业信息研究所,湖南长沙430000
出 处:《计算技术与自动化》2011年第2期89-95,共7页Computing Technology and Automation
基 金:湖南省研究生科技创新基金项目(CX2010B280)
摘 要:遗传算法、BP神经网络和多元回归是目前应用比较广泛的数据挖掘算法,它们各俱优点,同时也存在诸多无法避免的缺陷。该文在前三者的基础上,提出一种BP网络与多元回归模型融合的杂合BP网络,并采用遗传算法优化杂合BP网络的初始权值,有效地避免几种方法在单独使用时存在的缺陷。验证实验结果表明:新方法所建立的模型在收敛速度、精度和泛化能力上都明显优于GA、BP神经网络和多元回归,并且较当今比较热门的ELM、SVRKM和SVM也有较显著的改进。Genetic Algorithm, BP neural network and multiple regression are used widely in data mining algorithms, each of them have their benefits. Simultaneously, they have some inevitable flaws. On the basis of previous three, I made some improvements in the structure of them. First, I propose a hybrid BP network based on the integration of BP Network and multiple regression models. Then I used the hybrid genetic algorithm to optimize the initial weights of hybrid BP net- work. In that way, I effectively avoid the inevitable flaws when they alone. Validation results show, in convergence speed accuracy and generalization ability, the model of new methods is better than Genetic Algorithm, BP neural network and multiple regressions. In addition, the model of new methods has significant improvements compared with ELM, SVRKM and SVM.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28