检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国电子科技集团公司第二十八研究所,南京210007
出 处:《指挥信息系统与技术》2011年第3期30-34,共5页Command Information System and Technology
摘 要:针对蚁群算法在航迹规划中易于过早陷入局部最优解这一问题,提出了一种双向自适应改进蚁群算法。使用栅格节点对飞行空间进行建模,在搜索过程中以移动方向一定范围内最大信息素和目标引导函数作为启发因子。根据蚁群算法处理该问题时的信息素散播特点,重构了信息素的更新策略和散播方式。通过信息素的震荡变化和挥发系数的自适应调整,扩大了搜索空间,提高了搜索全局性,获得了一种有效的航迹规划算法,并取得了较好的仿真结果。The prominent problem of the ant colony algorithm in aircraft route planning is its tendency to be trapped into local optimal solution too early.An adaptive dual population ant colony algorithm is proposed to solve the problem.Using modeling information grid to describe the aircraft travel workspace,a heuristic factor based on the most pheromone in a moving direction rang and a goal guiding function are used during the searching process.Based on the features of the pheromone strewing when solving the problem by ant colony algorithm,the strewing method and updating strategy of pheromone are reconstructed.The concussion change of the pheromone and the adaptive adjustments of the volatile coefficient can expand the search space and improve the overall searching performance.The simulation result proves that the algorithm is feasible and effective in aircraft rout planning.
分 类 号:V249.1[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44