检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学计算机科学与技术学院,武汉430063
出 处:《计算机工程》2011年第14期172-174,177,共4页Computer Engineering
摘 要:建立一种支持向量机-高斯混合模型(SVM-GMM),用以提高开集说话人识别的识别率。该模型的基本思想是将SVM的分类结果用GMM模型进行确认。由于SVM模型具有较好的分类性能,而GMM模型能够较好地描述类别内部的相似性,因此这2个模型的组合能够优势互补,从而获得较好的识别效果。实验结果表明,使用SVM-GMM模型能有效地提高开集说话人识别的识别率。This paper sets up a new Support Vector Machine-Gussian Mixture Model(SVM-GMM) to improve speaker recognition rate based on open-set.The basic idea of the new model is that the classification results of the SVM are confirmed with GMM.Due to the good classification performance of SVM and the good description of the internal similarity of some category of GMM,the good recognition effect can be obtained by combining the two models.Experimental results show that using SVM-GMM model can improve the open-set speaker recognition rate effectively.
关 键 词:支持向量机 高斯混合模型 开集说话人识别 等误识率
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.193.179