基于变异蚁群算法的多约束运输路径优化  

Optimization for Multiple Constraints Transportation Path Based on Mutated Ant Colony Algorithm

在线阅读下载全文

作  者:万博[1] 卢昱[2] 陈立云[1] 何瑞波[1] 

机构地区:[1]军械工程学院计算机工程系,石家庄050003 [2]军械工程学院训练部,石家庄050003

出  处:《微计算机应用》2011年第7期6-12,共7页Microcomputer Applications

摘  要:针对运输路径优化中存在多约束限制的问题,建立了多约束运输路径优化问题(MCTPOP)的数学模型。对于求解算法,在基本蚁群算法的基础上,引入变异机制,采用线性递增的变异概率增长方式,根据变异蚂蚁的寻路特点,提出了一种Ant-enco&contr信息素更新策略。利用变异蚁群算法对MCTPOP进行求解,通过仿真实验表明,该算法能够减少陷入局部极值的可能性,提高了基本蚁群算法的寻优能力,是一种有效的MCTPOP求解算法。To solve the problem that there are multiple constraints limited in optimizing transportation path,a mathematical model of multiple constraints transportation path optimization problem(MCTPOP) was established.Based on general ant colony algorithm,a mutation mechanism is introduced into this algorithm which adopts the mode of mutation probability increasing linearly.According to the characteristics of mutated ants searching path,a pheromone updating policy called Ant-encocontr is provided in this paper.In order to solve MCTPOP with mutated ant colony algorithm,we design a simulate experiment.Simulation results demonstrated that the algorithm can reduce the possibility of falling in local optimum and improve the search ability of general ant colony algorithm.It's an effective algorithm for solving MCTPOP.

关 键 词:蚁群算法 变异机制 多约束 路径优化 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象