有限群的Sylow-子群的弱s-可补极大子群(英文)  被引量:7

On Weakly s-supplemented Maximal Subgroups of Sylow Subgroups of Finite Groups

在线阅读下载全文

作  者:李样明[1] 

机构地区:[1]广东第二师范学院数学系,广州广东510310

出  处:《数学进展》2011年第4期413-420,共8页Advances in Mathematics(China)

基  金:supported in part by NSFC(No.10871210);NSF of Guangdong(No.06023728)

摘  要:假设G是一个有限群,H是G的一个子群.称H在G是s-置换的,若对G的任意的Sylow-子群Gp,有HGp=GpG;称H在G是弱s-可补的,若存在G的子群T使得G=HT且HnT≤HsG,其中Hsc是所有包含在H中的G的s-置换子群生成的子群.本文给出了下列定理:设厂是一个包含超可解群系“的饱和群系,有限群G有一个正规子群H使得G/H∈F.若F^*(H)的每个Sylow子群的所有极大子群在G中是弱s-可补的,其中F^*(H)是H的广义Fitting子群,则G∈F.它是J,Algebra,2007,315:192-209一文中的Skiba公开问题在极大子群情形下的肯定回答.Suppose G is a finite group and H is subgroup of G. H is said to be s-permutable in G if HGp =GpH for any Sylow p-subgroup GB of G; H is called weakly s-supplemented subgroup of G if there is a subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H which are s-permutable in G. In this paper, the following theorem was given: Let F be a saturated formation containing U, the class of all supersolvable groups and G be a group with E as a normal subgroup of G such that G/H ∈F Suppose that every maximal subgroup of Sylow subgroups of F^*(H) is weakly s-supplemented in G. Then G ∈F. It is a positive answer for Skiba's open questions in J. Alqebra, 2007, 315:192-209 in the maximal subgroup case.

关 键 词:弱s-可补子群 超可解 饱和群系 广义FITTING子群 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象